172. The Synthesis of 4,7-Bis(dialkylamino)tricyclo[5.2.1.0 ${ }^{4,10}$ deca$\mathbf{1 (1 0) , 2 , 5 , 8 - t e t r a e n e s ~ a n d ~ t h e i r ~ R e d u c t i o n ~ w i t h ~ A l k a l i ~ M e t a l ~}$

by Holger Butenschön and Armin de Meijere*
Institut für Organische Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13

(6.V.85)

Abstract

The synthesis and characterization of the novel 4,7-bis(dialkylamino)tricyclo[5.2.1.0 $\left.{ }^{4.10}\right]$ deca- $1(10), 2,5,8$-tetraenes 12 from 1,4,7-trihalotriquinacenes 8 and secondary amines is reported. The structural and electronic characteristics of these as well as the acepentalene dianion ($\mathbf{3}^{2-}$) and some related systems as determined by semiempirical (MNDO) calculations are discussed. Thereby, $\mathbf{3}^{\mathbf{2 -}}$ should be a triply etheno-bridged trimethylenemethane dianion exhibiting Y-delocalization favored over the formation of a peripheral 10π-electronic system. Attempts directed towards the generation of 3^{2-} by reacting tetraenes 12 with Na led to the formation of tris(dialkylamino)triquinacenes 9 , presumably by a kind of reduction/disproportionation mechanism.

1. Introduction. - Triquinacene (1), when it was first prepared by Woodward and coworkers [1] in 1964, was not only conceived as an ideal precursor of the elusive dodecahedrane (2) [2] [3], but also as a potential precursor to the highly unsaturated acepentalene (3) (Scheme 1).

Scheme 1

1

2

3

Scheme 2

It is easily recognized that $\mathbf{1}$ and $\mathbf{3}$ have identical C-skeletons, and $\mathbf{1}$ already contains three of the five double bonds present in 3 . One is, therefore, surprised to find almost no reports [4] [5] on this possible approach to 3 , which is of great theoretical interest. In such a concept, the tetraenes 4 and 5 would have to be intermediates on the route from $\mathbf{1}$ to 3 (Scheme 2).

Here, we present a facile synthesis of the first stable derivatives of tetraene 5, along with semiempirical calculations on 4 and 5 , the acepentalene dianion (3^{2-}), and related systems, and finally some results of the attempted generation of $\mathbf{3}^{\mathbf{2 -}}$.

2. Synthesis of 4,7-Bis(dialkylamino)tricyclo[5.2.1.0 $\left.{ }^{4,10}\right]$ deca-1(10),2,5,8-tetraenes

 (12). - The 1-halotriquinacenes (6) and 1,4-dihalotriquinacenes (7) on the one hand and 1,4,7-trihalotriquinacenes (8) on the other show fundamentally different chemical behaviors.

6

7

8a $X=\mathrm{Cl}$

Upon nucleophilic substitution, mono- and dihalotriquinacenes 6 and 7 differentiate between hard and soft nucleophiles. With hard nucleophiles only bridgehead substitution ($S_{\mathrm{N}} 1$ type) products are formed [6], soft nucleophiles yield exo-3-isotriquinacene [7] derivatives instead [4] [5] [8]. In contrast, compounds $\mathbf{8}$ [4] [6] [8] with almost all sorts of nucleophiles ${ }^{1}$) yield bridgehead substitution products, e.g. 1,4,7-trimethoxy- (9c) [6] and 1,4,7-tris(dimethylamino)triquinacene (9d) with $\mathrm{NaOMe} / \mathrm{MeOH}$ and $\mathrm{Me}_{2} \mathrm{NH}$, respectively (Scheme 3).

Scheme 3

As had been demonstrated by D labelling, the methoxide substitution does not follow a $S_{\mathrm{N}} 1$-type mechanism but rather an elimination-addition sequence to yield 11c [7]. The same results has now been obtained in the reaction of $8 \mathbf{a}$ with $\mathrm{Me}_{2} \mathrm{ND}$, yielding tris(dimethylamino) [10-D]triquinacene (11d).

The D incorporation at $\mathrm{C}(10)$ strongly suggests the existence of tetraene intermediates of type $\mathbf{1 0}$. The olefinic protons of symmetrically $1,4,7$-trisubstituted derivatives $\mathbf{8 , 9}$, and 11 show a singlet in their ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra. Surprisingly, the trichloride 8a and the tribromide 8 b upon reaction with piperidine, formed a new product in good yields (86%), which showed a singlet and an $A B$-line system (integrated ratio $1: 1: 1$) in the olefinic region of its ${ }^{i} \mathrm{H}-\mathrm{NMR}$ spectrum. On the basis of this and other spectral data (IR, MS, ${ }^{13} \mathrm{C}$-NMR), the product was identified as 4,7 -dipiperidinotricyclo[5.2.1.04,0]-deca-1(10)2,5,8-tetraene (12e, Scheme 4).

Scheme 4

[^0]Piperidine is sterically more demanding than $\mathrm{Me}_{2} \mathrm{NH}$. It could, therefore, be rationalized that the steric bulk of the two piperidino groups in 12e inhibits a third molecule of piperidine from adding to the strained central double bond. The scope and limitations of this new reaction were tested with other secondary amines [9]. Morpholine, which is similar to piperidine by its molecular shape, gave the corresponding 4,7-dimorpholinotetraene $\mathbf{1 2 f}$ in 86% yield. The sterically more crowded 3,5-dimethylpiperidine (mixture of cis- and trans-isomers) yielded tetraene $\mathbf{1 2 g}$ only in 36% yield, which is less stable and more sensitive to heat and air than 12e and 12f. One can only speculate that the bulkier substituents in $\mathbf{1 2 g}$ are more easily eliminated, followed by decomposition through polymerization.

The even more crowded 2,6-dimethylpiperidine and 2,2,6,6-tetramethylpiperidine do not react with $\mathbf{8 b}$ to give a corresponding tetraene derivative 12. Instead, differing amounts of starting material $\mathbf{8 b}$ were isolated together with polymeric material. It is assumed that these amines are basic enough to eliminate HBr from $\mathbf{8 b}$ and form unstable tetraene $10\left(\mathrm{X}^{\prime}=\mathrm{Y}^{\prime}=\mathrm{Br}\right)$, which polymerizes faster than it reacts with these bulky amines by addition.

The reaction of $\mathbf{8 b}$ with pyrrolidine leads to tetraene $\mathbf{1 2 h}$ only in trace amounts; an addition product could be isolated, which was most likely the tripyrrolidino derivative 9 h ($\mathrm{Y}=$ pyrrolidino), along with a large amount of polymeric material. Surprisingly, a very satisfactory yield (77%) of 4,7-bis(diethylamino)tricyclo[5.2.1.0 ${ }^{4,10}$]deca-1(10),2,5,8-tetraene (12i) was obtained from $\mathbf{8 b}$ and $\mathrm{Et}_{2} \mathrm{NH}$ (see Table 1). When carefully monitored, the reaction of $\mathbf{8 b}$ with $\mathrm{Me}_{2} \mathrm{NH}$ yielded the corresponding tetraene $\mathbf{1 2 d}(47 \%)$ and the tris(dimethylamino) compound 9 d (31%).

Table 1. 4,7-Bis (dialkylamino) Iricyclo[5.2.1.0 ${ }^{4.10}$]deca-1(10),2,5,8-tetraenes 12, from I,4,7-trihalotriquinacenes 8

Educt	sec-Amine	Product	Yield $[\%]$	React. cond.	Workup ${ }^{\text {a }}$

${ }^{2}$) I: Extraction pentane $/ \mathrm{H}_{2} \mathrm{O}$; II: low-temperature liquid chromatography, -30°, silica gel, t - $\mathrm{BuOMe} / \mathrm{Me}_{3} \mathrm{~N}$ 10:1; III: Kugelrohr distillation, $100^{\circ} / 0.01$ Torr.
${ }^{b}$) By-product 9d (31\%).

Tetraenes 12 can conveniently be isolated as colorless oils by low-temperature column chromatography. The bis(diethylamino) compound 12i, however, is best purified by Kugelrohr distillation. All tetraenes 12, which slowly decompose in solution or in the presence of air are easily identified by their characteristic 'H-NMR signals in the olefinic region (Table 2). Compound $\mathbf{1 2 i}$ contains two sets of diastereotopic methylene protons which appear, in the $400-\mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, as a nicely resolved $A B X_{3}$-line system.

Compared to 1 with its pyramidal shape, tetraenes $\mathbf{1 2}$ are forced by their additional double bond to have a more planar C-skeleton. This is evidenced by their ${ }^{13} \mathrm{C}$-NMR data (see Table 3).

Table 2. ${ }^{\prime} H-N M R(270 \mathrm{MHz})$ Data of the Tetraenes 12. Chemical shift δ_{TMS} in ppm, coupling constants see Exper.

Part.					
Compound	Solvent	$\mathrm{H}-\mathrm{C}(5(6))^{\text {a }}$)	$\mathrm{H}-\mathrm{C}(3(8))^{\mathrm{b}}$)	$\mathrm{H}-\mathrm{C}(2(9))^{\text {b }}$)	NR_{2}
12d	CDCl_{3}	5.68	6.21	6.75	2.34 ($s, 6 \mathrm{H})$
					2.41 ($s, 6 \mathrm{H}$)
e	$\mathrm{C}_{6} \mathrm{D}_{6}$	5.50	6.20	6.69	1.25-1.70 (m, 12H)
					2.70-2.95 ($\mathrm{m}, 8 \mathrm{H}$)
f	$\mathrm{C}_{6} \mathrm{D}_{6}$	5.41	6.27	6.56	2.57-2.79 ($\mathrm{m}, 8 \mathrm{H}$)
					3.67 ($t, 8 \mathrm{H}$)
g	$\mathrm{C}_{6} \mathrm{D}_{6}$	5.60	6.21	6.72	0.80-0.87 (2d, 12H)
					$1.50-2.14$ ($m, 8 \mathrm{H}$)
					3.04-3.45 ($\mathrm{dm}, 8 \mathrm{H})$
i	$\mathrm{C}_{6} \mathrm{D}_{6}$	5.47	6.14	6.61	1.09 (t, 12H)
					2.66-2.93 ($m, 8 \mathrm{H}$)

${ }^{\text {a }}$) Singlet.
${ }^{\text {b }}$) $A B$-line system, ${ }^{3} J(2(9), 3(8))=5.0 \mathrm{~Hz}$ in all cases.

Table 3. ${ }^{13} \mathrm{C}$-NMR Data of the Tetraenes 12. Solvent: $\left(\mathrm{D}_{6}\right)$ benzene, chemical shift δ_{TMS} in ppm , Obs. $=$ observable, Mult. = multiplicity, J in Hz .

Com- pound	v $[\mathrm{MHz}]$	Obs.	$\mathrm{C}(1)$	$\mathrm{C}(2(9))$	$\mathrm{C}(3(8))$	$\mathrm{C}(4(7))$	$\mathrm{C}(5(6))$	$\mathrm{C}(10)$	$\mathrm{C}\left(2^{\prime}\right)$	$\mathrm{C}\left(3^{\prime}\right)$	$\mathrm{C}\left(4^{\prime}\right)$
$\mathbf{1 2 e}$	67.91	δ	163.2	135.9	147.8	82.1	129.6	163.4	50.6	27.1	25.5
\mathbf{f}	67.91	δ	161.5	135.6	147.3	81.6	130.8	164.9	50.0	67.6	-
i	100.63	δ	162.2	136.2	148.5	82.0	128.8	165.2	45.6	15.8	-
e	67.91	Mult.	s	d	d	s	d	s	t	t	t
		${ }^{1} J(\mathrm{C}, \mathrm{H})$	-	165.4	165.4	-	165.4	-	131.9	128.0	128.0
i	100.63	Mult.	$t t$	$d d$	$d d$	t	$d d$	t	$t q$	$q t$	-
		${ }^{J} J(\mathrm{C}, \mathrm{H})$	-	166.2	165.5	-	164.2	-	131.6	125.2	-
		${ }^{2} J(\mathrm{C}, \mathrm{H})$	11	2.5	3	~ 6	5	-	4.3	2	-
		${ }^{3} J(\mathrm{C}, \mathrm{H})$	5	-	-	-	-	4	-	-	-

The chemical shifts of $\mathrm{C}(2,3,5,6,8,9)$ and those of $\mathrm{C}(4,7)$ are within the usual range. The two signals above 160 ppm are assigned to $\mathrm{C}(1)$ and $\mathrm{C}(10)$, as they do not show a ${ }^{1} J(\mathrm{C}, \mathrm{H})$ coupling. For the bis(diethylamino) compound 12 i , the $100.63-\mathrm{MHz}$ gated ${ }^{13} \mathrm{C}$-NMR spectrum showed coupling constants ${ }^{2} J(\mathrm{C}, \mathrm{H})=11 \mathrm{~Hz}$ and ${ }^{3} J(\mathrm{C}, \mathrm{H})=5 \mathrm{~Hz}$ for $\mathrm{C}(1)$, and ${ }^{3} J(\mathrm{C}, \mathrm{H})=4 \mathrm{~Hz}$ for $\mathrm{C}(10)$. This indicates a partial planarization of the C -skeleton, as the arguments leading to the Karplus relationship between interplanar angles and H, H-coupling constants apply to C, H couplings as well [10].

The tetraenes $\mathbf{1 2}$ are the first spectroscopically completely characterized derivatives of the parent hydrocarbon 5. Only Jacobson reported in 1974 a [4+2] cycloaddition dimer of the octachloro derivative, which was characterized only by IR, MS, and chemical transformation [11]. The stable tetraenes 12 should be potential precursors for the preparation of acepentalene (3) and its dianion (3^{2-}).
3. Calculations. - With regard to the stability of polyenes 3-5, two aspects have to be taken into account, the destabilizing strain and the stabilizing conjugative effect. Forcefield calculations of 3-5 and related olefins have been reported [8]; according to these results the olefinic strain (OS) [12] of 3-5 should be so high as to preclude the possibility

for these to be isolated as such. Among all, 4 ought to be substantially more strained than 5 , due to the impossibility of releasing strain by independent bridgehead double bond deformation.

To obtain some insight into their electronic nature, MNDO calculations [13] were performed for the tetraenes 4,5 , and the anions 13,14 , the conjugate bases of 4 (Table 4).

The MNDO-calculated enthalpies of formation ΔH_{ρ}° of both 4 and 5 are about the same. Because of its larger HOMO-LUMO energy gap (8.53 vs. 7.64 eV), however, 5 should be less reactive than 4 . This must be due to the fact that $\mathbf{4}$ is linearly conjugated tetraene whereas 5 contains only a cross-conjugated triene unit ${ }^{2}$). Yet the HOMO-LUMO energy gap for 5 is smaller than the usual 9.2 eV for 2-vinyl substituted dienes [15]. The

Table 4. MNDO-Calculated Enthalpies of Formation $\triangle \mathrm{H}_{f}^{\circ}$ and Orbital Energies $O E$ of 4, 5, 13, and 14

Compound:	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{1 3}$	$\mathbf{1 4}$
$\Delta H_{\mathrm{f}}^{\circ}(\mathrm{kcal} / \mathrm{mol}):$	109.92	110.50	100.21	110.92
OE (eV)				
LUMO +4			+8.78	+8.49
LUMO + 3	+1.65	+1.79	$\left.+6.88^{\mathrm{a}}\right)$	+7.10
LUMO +2	+1.32	+0.97	$\left.+6.87^{\mathrm{a}}\right)$	+7.02
LUMO +1	+0.67	+0.74	$\left.+4.91^{\mathrm{a}}\right)$	+5.36
LUMO	-0.49	--0.16	$\left.+4.90^{\mathrm{a}}\right)$	+4.97
HOMO	-8.13	-8.69	$\left.-2.37^{\mathrm{a}}\right)$	-2.47
HOMO-1	-9.43	-9.74	$\left.-2.40^{\mathrm{a}}\right)$	-2.85
HOMO-2	-10.28	-9.86	$\left.-5.17^{\mathrm{a}}\right)$	-4.66
HOMO-3	-11.11	-11.12	$\left.-5.17^{\mathrm{a}}\right)$	-5.79
HOMO-4			-6.76	-6.81

${ }^{\text {a }}$) Degenerate.

Table 5. MNDO-Calculated Bond Lengths [pm] of $3^{2-}, 13$ and 14

Bond	$\mathbf{3}^{\mathbf{2 -}}$	$\mathbf{1 3}$	$\mathbf{1 4}$
$1-10$	141.6	152.3	142.3
$4-10$	141.6	152.3	142.3
$7-10$	141.6	152.5	150.9
$1-2$	144.5	141.8	143.8
$2-3$	143.4	143.4	143.1
$3-4$	144.5	141.2	143.5
$4-5$	144.5	141.6	145.2
$5-6$	143.5	143.4	139.4
$6-7$	144.5	141.6	152.3
$7-8$	144.5	141.6	152.0
$8-9$	144.5	143.4	139.5
$9-1$	144.6	141.6	145.2

[^1]LUMO's of both $\mathbf{4}$ and $\mathbf{5}$ have negative energy values, indicating thermodynamic stabilization of the respective hydrocarbons by reduction to the corresponding anions.

Among the two isomeric conjugated bases of 4 (13 and 14), 13 should be thermodynamically more stable. Both the orbital energies (Table 4) as well as the molecular geometry (Table 5) indicate an aromatic, delocalized peripheral 10π-electron system. The peripheral bond lengths converge, the system realizes $C_{3 v}$ symmetry, and the molecular orbitals degenerate. In contrast, 14 is only a 1,3 -divinylcyclopentadienide with alternating bond lengths and nondegenerate MO's. In 13, a higher degree of charge delocalization is possible, while $\mathbf{1 4}$ has the steric problem to form a more or less planar cyclopentadienide system within the rigid nonplanar C-skeleton.

(a)

(b)
3^{2-}
Table 6. MNDO-Calculated Charge Distribution in $3^{\mathbf{2 -}^{-}}$

Atom	Abs. ${ }^{\text {a }}$)	Rel. ${ }^{\text {b }}$)
$\mathrm{C}(10)$	-0.150	7.51
$\mathrm{C}(1,4,7)$	-0.246	12.31
$\mathrm{C}(2,3,5,6,8,9)$	-0.145	7.26
$\mathrm{H}-\mathrm{C}(2,3,5,6,8,9)$	-0.040	2.00

${ }^{\text {a }}$) Charge excess in elemental charges. ${ }^{\text {b }}$) Charge excess in \% of gross charge.

MO calculations predict acepentalene (3) to have a triplet ground state [16]. Therefore, $\mathbf{3}^{2-}$ should be a closed-shell system. According to our MNDO calculation, $\mathbf{3}^{2-}$ has an enthalpy of formation $\Delta H_{\mathrm{f}}^{\circ}=199.49 \mathrm{kcal} / \mathrm{mol}$, and a trigonally planar geometry (for bonds lengths see Table 5). The calculated charge densities (Table 6) with the largest excess on the peripheral bridgehead C -atoms $\mathrm{C}(1,4,7)$ exclude a delocalization like in (b), which would be analogous to that found in the aceheptalene dianion [17]. Instead, $\mathbf{3}^{2-}$ delocalizes the two excess charges like in (a), which corresponds to a Y delocalization [18-23]. Accordingly, 3^{2-} should be regarded as a triply etheno-bridged trimethylenemethane dianion. This may be due to Coulomb interactions [24] which should be more dominant in 3^{2-} with its three ethylene units than in the aceheptalene dianion, which has two butadiene and one ethylene unit on the perimeter allowing a wider spread of charge density.
4. Attempted Generation of the Acepentalene Dianion (3-). - The ideal precursor to 3^{2-} would be a bisquaternary ammonium salt of one of the tetraenes 12 , which upon reduction would expell two molecules of the tertiary amine. However, several attempts to quaternize the aminotetraenes $\mathbf{1 2}$ lead to polymeric materials only. In a few experiments, some weak evidence (${ }^{1} \mathrm{H}-\mathrm{NMR}$, solubility) was obtained for the formation of an ammonium salt. Apparently, quaternary ammonium derivatives of $\mathbf{1 2}$ are rather sensitive and readily cleave to form unstable intermediates.

Therefore, the tetraenes 12 themselves were reduced with Na wire hoping that the amino substituents would be activated enough in their triply allylic positions to leave the molecule as amide anions (Scheme 5).

Scheme 5

These reductions were performed in $\left(\mathrm{D}_{8}\right)$ THF with NMR control [25], as the trigonally symmetric 3^{2-} (see Chap.3) should give rise to characteristically simple ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra. With the three tetraenes $\mathbf{1 2 e}, \mathrm{f}, \mathrm{i}$ the Na wire showed dark points after $6-8 \mathrm{~h}$, later signs of dissolution. The color of the reaction mixture changed from colorless/ pale yellow to a dark red-brown.

In all three cases, a decrease in starting material signals, and an interesting singlet in the olefinic region was observed (Table 7). The chemical shifts of these new singlets were close to the expected value 5.73 ppm , calculated for 3^{2-} by the Schaefer-Schneider correlation [26] ${ }^{3}$).

Table 7. ${ }^{l} H-N M R(270 \mathrm{MHz})$ Data of the Na-Reduction Products of 12 . Spectra of the reaction mixture after complete reaction; chemical shift $\delta_{\text {TMS }}$ in ppm; solvent: (D_{8}) THF.

Educt	Observable signals
$\mathbf{1 2 e}$	$1.48(\mathrm{~m}) ; 2.342 .63(\mathrm{~m}) ; 3.30(\mathrm{~s}) ; 5.31(\mathrm{~s})$
$\mathbf{1 2 f}$	$2.37-2.76(\mathrm{~m}) ; 3.63(\mathrm{~m}) ; 5.45(\mathrm{~s})$
$\mathbf{1 2 i}$	$1.03\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.2\right) ; 2.71(\mathrm{q}) ; 5.55(\mathrm{~s})$

The simplicity of the 'H-NMR spectra proves that the products were C_{3}-symmetrical and bore either three identical substituents at $\mathrm{C}(1,4,7)$ or none. Interestingly, the diastereotopicity of the CH_{2} protons in the $\mathrm{Et}_{2} \mathrm{~N}$ groups of 12 i disappeared in the course of the reaction, leading to a quadruplet for these protons in the product spectrum.

The ${ }^{13} \mathrm{C}$-NMR data (Table 8) of all three products are in accord with a C_{3} symmetry. The peripheral olefinic C-atoms give rise to a doublet around 133 ppm , some spectra show an additional signal 0.2 ppm upfield from this. All three products show one signal for quaternary C -atoms around 88 ppm proved by DEPT-NMR. This signal had to be assigned to three peripheral bridgehead C -atoms, as in some cases a triplet splitting with $\mathrm{a}^{2} J(\mathrm{C}, \mathrm{H})=8 \mathrm{~Hz}$ was observed.

Although these findings were consistent with the formation of the C_{3}-symmetrical dianion 3^{2-}, two control experiments gave contradicting evidence. Firstly, the reaction of Na with $\mathrm{Et}_{2} \mathrm{NH}\left(\mathrm{D}_{8}\right) \mathrm{THF}$ gave a solution of $\mathrm{NaN}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}$, the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signals of which differed from those of the $\mathrm{Et}_{2} \mathrm{~N}$ groups in the reduction product fo 12i. Secondly, in one experiment, in which $\mathbf{1 2 i}$ had been reacted with $\mathrm{NaK}_{2.8}[27]$ at room temperature for 24 h and then quenched at -78° with $\mathrm{MeOH}, 1,4,7$-tris(diethylamino)triquinacene (9 i) was isolated in 53% yield and identified by its MS (Scheme 6). Although the signal of $\mathrm{H}-\mathrm{C}(10)$ could not be assigned, the chemical shift of the signal at 5.55 ppm was almost identical to that of the alledged 3^{2-}.

[^2]Table 8. ${ }^{13} \mathrm{C}$-NMR Data of the Na-Reduction Products of 12. Spectra of the reaction mixtures after complete reaction; Obs. = observable; SEFT: Spin-echo-FT; DEPT: Distortionless enhancement by polarization transfer; chemical shift $\delta_{\text {TMS }}$ in ppm in (D_{8}) THF; $\mathrm{P}=$ phase,$+=$ positive,$-=$ negative; Mult. $=$ multiplicity; coupling constants J in Hz .

Educt	ν [MHz]	Pulse sequ.	Obs. signals							
12e	100.62	SEFT	δ	26.0	27.7	50.5	89.0	133.1		
			P	-	-	-	-	+		
			Mult.	t	t	t	t	d		
			${ }^{1} J(\mathrm{C}, \mathrm{H})$	126	127	130	-	162		
			${ }^{2} J(\mathrm{C}, \mathrm{H})$	-	-	-	8	-		
12 f	67.93	SEFT	δ	49.2	50.0	58.3	68.1	88.6	133.2	
			P	-	-	+	-	-	+	
12 i	100.62	SEFT	δ	16.1	44.2	65.3	87.4	132.9		
			P	+	-	+	-	+		
			Mult.	9	$t q$	d	t	d		
			${ }^{1} J(\mathrm{C}, \mathrm{H})$	125	131	130	-	161		
			${ }^{2} J(\mathrm{C}, \mathrm{H})$	-	5	-	8	-		
	50.13	SEFT	δ	16.5	44.6	45.2	65.5	87.6	133.1	133.3
			P	$+$	+	-	+	-	+	+
	50.13	DEPT	δ	16.5	44.6	45.2	65.5		133.1	133.3
			P	+	+	-	+		+	+

As no D was incorporated upon quenching with $\left(\mathrm{D}_{1}\right)$ methanol, 9 i had apparently been formed before the addition of MeOH by proton transfer from one of the $\mathrm{Et}_{2} \mathrm{~N}$ groups or undeuterated THF. Compound 9 i cannot have arisen from an addition of diethylamide ions to starting material 12i, since corresponding control experiments did not yield any 9 i. Direct reaction of the tribromide $\mathbf{8 b}$ with diethylamide also did not lead to 9 i, but only to $\mathbf{1 2 i}(82 \%)$. All experimental observations are compatible with some sort of reduction/disproportionation reaction, which overall transforms three molecules $\mathbf{1 2 i}$ probably via 12^{-}and 15 into two molecules 9 i . In addition, one molecule of $3,3^{-}$, or 3^{2-} must have been formed, which subsequently suffered from polymerization (Scheme 7). Without further experiments, it can only be speculated that the additional signal near 130 ppm in some ${ }^{13} \mathrm{C}$-NMR spectra of reduction products belonged to 3^{2-}.

It is reasonable to assume that $\mathbf{1 2 i}$ is reduced to $\mathbf{1 2}^{-}$by Na in the first step. As $\mathbf{1 2}^{-}$ would be less planar than $\mathbf{1 2 i}$, it might be more easily attacked by a diethylamide anion or

an aminyl radical [28]. This implies a maximum yield of 66% for $9 \mathbf{i}$, which is in accord with the 53% isolated yield. An intermediate anion of type 15 should be a very strong base.

This work was kindly supported by the Stiftung Volkswagenwerk, the Fonds der Chemischen Industrie, BASF $A G$, Ludwigshafen am Rhein, Hoechst $A G$. Frankfurt, and Bayer AG, Leverkusen. H.B. gratefully acknowledges a doctoral scholarship from the Studienstiftung des Deutschen Volkes.

Experimental Part

General. Gas chromatography GC: Anal., Siemens L402 (GC 402), Hewlett-Packard 5710 A (GC 5710); prep., Varian Aerograph 920 ($G C 920$). Column chromatography was performed with silica gel 60 of E. Merck. UV spectra $\left[\lambda_{\max }(\log \varepsilon)\right]$: Perkin-Elmer-Hitachi 200 in spectroscopic grade hexane. IR ($\overline{\mathrm{v}} \mathrm{in} \mathrm{cm}^{-1}$): Perkin-Elmer 297 and 399. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\delta_{\text {TMS }}\right.$ in ppm, Jin Hz): Varian T $60(60 \mathrm{MHz})$, Bruker WP $80(80 \mathrm{MHz})$, WH $270(270 \mathrm{MHz})$, and WM $400(400 \mathrm{MHz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($\delta_{\text {TMS }}$ in ppm , J in Hz): Bruker WP $80(20.17 \mathrm{MHz})$, WH $270(67.91-67.93$ $\mathrm{MHz}), W M 400(100.62 \mathrm{MHz})$, and Varian $X L 200(50.31 \mathrm{MHz})$. Positive $\left(\mathrm{CH}\right.$ or $\left.\mathrm{CH}_{3}\right)$ and negative (C or CH_{2}) phases for SEFT (spin-echo Fourier transform) and DEPT (distortionsless enhancement by polarization transfer) spectra are indicated by + and - , resp. MS (EI) and MS (CI) (m / z) : Varian CH7, MAT 311, MAT 311A, and high-resolution MS (HR-MS): MAT 311 and MAT 731.

1,4,7-Tris(dimethylamino) tricyclo[5.2.1.0 ${ }^{4.10}$]deca-2,5,8-triene (9d). 1,4,7-irichlorotricyclo [5.2.1.0 $0^{4,10}$]deca-$2,5,8$-triene ($\mathbf{8 a} ; 130 \mathrm{mg}, 0.56 \mathrm{mmol}$) in $\mathrm{Me}_{2} \mathrm{NH}(3 \mathrm{ml})$ were kept at 25° in a thick-wall screw-cap bottle, wrapped in aluminum foil. After 4 d , the anal. GC ($G C 402,1.5 \mathrm{~m} 3 \% S E 30,150^{\circ}$) of the mixture showed one main product, which was purified by prep. GC (GC $920,1.0 \mathrm{~m} 10 \% S E 30,150^{\circ}$): $62.4 \mathrm{mg}\left(0.24 \mathrm{mmol}, 43.0 \%\right.$) of $9 \mathrm{~d} . t_{\mathrm{R}} 3.60$ (rel. to 8a), colorless cryst. M.p. 74°, purity 100% (NMR). IR (KBr): 3040, 2980, 2930, 2810, 2770, 1450, 1330, 1110, $1010,790,760{ }^{\top} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 2.45\left(s, 3\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right) ; 3.21(s, \mathrm{H}-\mathrm{C}(10)) ; 5.57(s, \mathrm{H}-\mathrm{C}(2(3,5,6,8,9))$). MS (70 eV): $260\left(M^{+}+1,5\right), 259\left(M^{+}, 27\right), 215\left(M^{+}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}, 35\right), 214\left(M^{+}-\mathrm{H}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}, 77\right), 200$ $\left(M^{+}-\mathrm{CH}_{3}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}, \quad 90\right), \quad 185 \quad\left(M^{+}-2 \mathrm{CH}_{3}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}, \quad 25\right), \quad 171 \quad\left(M^{+}-2\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}, \quad 87\right), \quad 156$ $\left(M^{+}-2\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}-\mathrm{CH}_{3}, 100\right), 128\left(M^{+}-3\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}+\mathrm{H}, 33\right), 127\left(M^{+}-3\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}, 18\right)$. HR-MS $\left(\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{3}\right)$: calc. 259.204838; found 259.20497.
1.4,7-Tris (dimethylamino) [10- $\left.{ }^{2} \mathrm{H}\right]$ tricyclo[5.2.1.0 $\left.0^{4,10}\right]$ deca-2.5,8-triene (11d). Compound $\mathbf{8 a}(102.0 \mathrm{mg}, 0.44$ $\mathrm{mmol})$ was reacted with $\mathrm{Me}_{2} \mathrm{ND}(3 \mathrm{ml})$ as described for 9 d . The anal. $\mathrm{GC}\left(G C 402,1.5 \mathrm{~m} 3 \% S E 30,150^{\circ}\right)$ showed one main product with the same t_{R} as 9 d . The product was purified by prep. GC ($G C 920,1.0 \mathrm{mg} 10 \% S E 30,150^{\circ}$): $32.3 \mathrm{mg}(0.12 \mathrm{mmol}, 28.3 \%)$ of $\mathbf{1 2 d}$. IR (KBr): as for 9 d . ${ }^{\mathrm{t}} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 2.45\left(s, 3\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right) ; 3.31(s$, $0.35 \mathrm{H}, \mathrm{H}-\mathrm{C}(10)) ; 5.57(\mathrm{~s}, \mathrm{H}-\mathrm{C}(2(3,5,6,8,9))) . \mathrm{MS}(80 \mathrm{eV}): 261\left(M^{+}+1,4\right), 260\left(M^{+}, 18\right), 259\left(M^{+}-\mathrm{H}, 9\right) ; 65 \%$ D incorporation (det. by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and MS).

Tetraenes 12. - General Procedure. - The 1,4,7-trihalotriquinacene 8 is stirred with the freshly distilled secondary amine at 25°. After a sufficiently long reaction time, the secondary amine is evaporated in a rotary evaporator. The residue is dissolved in pentane (30 ml), and solid ammonium halide is filtered off. The soln. is extracted with $\mathrm{H}_{2} \mathrm{O}(3 \times 30 \mathrm{ml})$. Each aq. phase is extracted with pentane $(30 \mathrm{ml})$. The combined org. phases are dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent is evaporated in a rotary evaporator, the residue dissolved in t-BuOMe and chromatographed at -30° through 50 g of silica gel ($(t-\mathrm{Bu}) \mathrm{OMe} / \mathrm{Me}_{3} \mathrm{~N} 10: 1$, column $\left.40 \times 2 \mathrm{~cm}\right)$.

4,7-Bis(dimethylamino) tricyclo(5.2.1.0 ${ }^{4,10}$ Jdeca-1(10),2,5,8-tetraene (12d). 1,4,7-Tribromotriquinacene ($\mathbf{8 b}$) ($215 \mathrm{mg}, 0.59 \mathrm{mmol}$) [4] [6] in $\mathrm{Me}_{2} \mathrm{NH}\left(5 \mathrm{ml}\right.$) was kept at 25° in a thick-wall screw-cap bottle. After 5 min , crystals of $\mathrm{Me}_{2} \mathrm{NH}_{2} \mathrm{Br}$ started to precipitate. After 14 d , the bottle was carefully opened and the $\mathrm{Me}_{2} \mathrm{NH}$ allowed to evaporate. The residue was dissolved in pentane (30 ml). Solid ammonium salt was filtered off, and the soln. was extracted with water $(3 \times 30 \mathrm{ml})$. Each aq. phase was extracted with pentane $(30 \mathrm{ml})$. The combined org. phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in a rotary evaporator to about 2 ml . The anal. GC (GC 5710, $1.5 \mathrm{~m} 5 \%$ $S E 30,150^{\circ}$) showed that two main products had been formed. The solvent was completely evaporated, and the remaining colorless syrup was dried in vacuo for 30 min at 0.1 Torr. The mixture (108 mg), was analyzed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and GC/MS without separation. Component I (rel. $t_{\mathrm{R}} 1.00$): $48 \mathrm{mg}(0.19 \mathrm{mmol}, 31 \%)$ of 9 d . Component $I I\left(t_{\mathrm{R}} 1.28\right): 60 \mathrm{mg}(0.28 \mathrm{mmol}, 47 \%)$ of 12d. IR (film): 9d and 12d: 3055, 2950, 2865, 2840, 2780, 1450, 1270, 1020, 800. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 12 \mathrm{~d}: 2.34\left(s,\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right) ; 2.41\left(s,\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right) ; 5.68(s, \mathrm{H}-\mathrm{C}(5(6))) ; 6.21(d$, $\left.{ }^{3} J(2(9), 3(8))=5.0, \mathrm{H}-\mathrm{C}(3(8))\right) ; 6.75(d, \mathrm{H}-\mathrm{C}(2(9)))$. $\mathrm{MS}(70 \mathrm{eV}): 12 \mathrm{~d}: 215\left(M^{+}+\mathrm{H}, 100\right), 200\left(M^{+}+\mathrm{H}-\mathrm{CH}_{3}\right.$, 14), $199\left(M^{+}-\mathrm{CH}_{3}, 14\right), 185\left(M^{+}+\mathrm{H}-2 \mathrm{CH}_{3}, 11\right), 171\left(M^{+}+\mathrm{H}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}, 31\right), 170\left(M^{+}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}, 43\right), 127$ $\left(M^{+}+\mathrm{H}-2\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}, 29\right), 126\left(M^{+}-2\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}, 17\right)$.

4,7-Dipiperidinotricyclo(5.2.1.0 $\left.0^{4,70}\right]$ deca- $1(10), 2,5,8$-tetraene (12e). a) Compound $\mathbf{8 a}[7]$ ($41 \mathrm{mg}, 0.18 \mathrm{mmol}$) was reacted with piperidine (5 ml) for 14 d (see General Procedure). $40 \mathrm{mg}(0.14 \mathrm{mmol}, 86 \%) 12 \mathrm{e}$, bright yellow oil, which rapidly becomes dark under the influence of air.
b) Compound $\mathbf{8 b}(360 \mathrm{mg}, 0.98 \mathrm{mmol})$ [4] [6] was reacted with piperidine (5 ml) for 1 d . Yield 227 mg (0.84 mmol, 86%) of 12e, purity $\sim 95 \%$ (NMR). IR (film): 3075, 2960, 2880, 2850, 2770, 1460, 1325, 1190, 1130, 795. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 1.25-1.70\left(\mathrm{~m}, 12 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right), 2 \mathrm{H}-\mathrm{C}\left(4^{\prime}\right), 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 2.70-2.95\left(\mathrm{~m}, 8 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right.$, $\left.2 \mathrm{H}-\mathrm{C}\left(6^{\prime}\right)\right) ; 5.50(s, \mathrm{H}-\mathrm{C}(5(6))) ; 6.20\left(d,{ }^{3} J(2(9), 3(8)=5.0, \mathrm{H}-\mathrm{C}(3(8))) ; 6.72(d, \mathrm{H}-\mathrm{C}(2(9))) .{ }^{13} \mathrm{C}-\mathrm{NMR}(67.91\right.$ $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) 25.5\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=128.0, \mathrm{C}\left(4^{\prime}\right)\right) ; 27.1\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=128.0, \mathrm{C}\left(3^{\prime}\right)\right) ; 50.6\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=131.9, \mathrm{C}\left(2^{\prime}\right)\right) ; 82.1$ (br. $s, \mathrm{C}(4(7))) ; 129.6\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=165.4, \mathrm{C}(5(6))\right.$); $135.9\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=165.4, \mathrm{C}(2(9))\right) ; 147.8\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=165.4\right.$, $\mathrm{C}(3(8))) ; 163.2(s, \mathrm{C}(1)) ; 163.4(s, \mathrm{C}(10))$. MS (70 eV): $294\left(M^{+}, 1\right), 211\left(M^{+}+\mathrm{H}-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}, 70\right), 210$ $\left(M^{+}-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}, 29\right), 209\left(M^{+}-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}, 100\right), 128\left(M^{+}+2 \mathrm{H}-2 \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}, 23\right), 127\left(M^{+}+\mathrm{H}-2 \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}, 22\right)$, $126\left(M^{+}-2 \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}, 54\right), 115(12), 84\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}, 60\right)$. MS (isobutane-Cl): $295\left(M^{+}+\mathrm{H}, 72\right), 294\left(M^{+}+\mathrm{H}-\mathrm{H}\right.$, 13), $293\left(M^{+}+\mathrm{H}-2 \mathrm{H}, 23\right), 213\left(M^{+}+\mathrm{H}-\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}, 20\right), 212\left(M^{+}+\mathrm{H}-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}, 72\right), 211\left(M^{+}+\mathrm{H}-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}\right.$, 33), $210\left(M^{+}+\mathrm{H}-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}, 100\right), 129\left(M^{+}+\mathrm{H}-2 \mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}, 20\right), 128\left(M^{+}+\mathrm{H}-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}, 20\right), 127$ $\left(M^{+}+\mathrm{H}-2 \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}, 24\right), 116$ (13). HR-MS $\left(\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}, M^{+}-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}\right)$: calc. 209.1204; found 209.1202.

4,7-Dimorpholinotricyclo[5.2.1.0 ${ }^{4.10}$]deca-1 (10),2,5,8-tetraene ($\mathbf{1 2 1}$). Compound $\mathbf{8 b}(300 \mathrm{mg}, 0.82 \mathrm{mmol}$) was reacted with morpholine (5 ml) for $1 \mathrm{~d}: 208 \mathrm{mg}(0.70 \mathrm{mmol}, 86 \%)$ of $\mathbf{1 2 f}$, bright yellow oil, which becomes brown under the influence of air, purity $\sim 90 \%$ (NMR). IR (film): $3080,2955,2855,2820,1660,1620,1450,1270,1115$, 790. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 2.57-2.79\left(\mathrm{~m}, 8 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right), 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.67\left(t,{ }^{3} \mathrm{~J}\left(2^{\prime}, 3^{\prime}\right)=4.7,8 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right.$, $\left.2 \mathrm{H}-\mathrm{C}\left(6^{\prime}\right)\right) ; 5.41(s, \mathrm{H}-\mathrm{C}(5(6))) ; 6.27\left(d,{ }^{3} J(2(9), 3(8)=5.0, \mathrm{H}-\mathrm{C}(3(8))) ; 6.56(d, \mathrm{H}-\mathrm{C}(2(9))) .{ }^{13} \mathrm{C}-\mathrm{NMR}(67.91\right.$ $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 50.0\left(\mathrm{C}\left(3^{\prime}\right)\right) ; 67.6\left(\mathrm{C}\left(2^{\prime}\right)\right) ; 81.6(\mathrm{C}(4(7))) ; 130.8(\mathrm{C}(5(6))) ; 135.6(\mathrm{C}(2(9))) ; 147.3(\mathrm{C}(3(8))) ; 161.5$ (C(1)); $164.9(\mathrm{C}(10)) . \quad \mathrm{MS}(70 \mathrm{eV}): 300\left(M^{+}+2 \mathrm{H}, 13\right), 299\left(M^{+}+\mathrm{H}, 47\right), 298\left(M^{+}, 14\right), 214$ $\left(M^{+}+2 \mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}, 72\right), 213\left(M^{+}+\mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}, 86\right), 212\left(M^{+}-\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}, 35\right), 211\left(M^{+}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}, 92\right)$, $128\left(M^{+}+2 \mathrm{H}-2 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}, 100\right), 127\left(M^{+}+\mathrm{H}-2 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}, 65\right), 126\left(M^{+}-2 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}, 90\right), 115$ (36), 87 $\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}, 38\right), 86\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}, 38\right)$. HR-MS $\left(\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}, M^{+}+\mathrm{H}\right)$; calc. 299.175953 ; found 299.1759 ± 0.0002.

4,7-Bis ($3^{\prime}, 5^{\prime}$-dimethylpiperidino) tricyclo[$5 \cdot 2 \cdot 1.0^{4,10}$]deca-1(10),2,5,8-tetraene ($\mathbf{1 2 g}$). Compound $\mathbf{8 b}$ (115 mg , 0.31 mmol) was reacted with 3,5 -dimethylpiperidine (5 ml ; cis/trans mixture) for $1 \mathrm{~d}: 40 \mathrm{mg}(0.11 \mathrm{mmol}, 36 \%$) of 12 g , yellow oil, which rapidly becomes dark under the influence of air, purity $\sim 90 \%$ (NMR). IR (film): 3040 , $2940,2900,2780,1450,1360,1320,1190,1120,860,790,765 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 0.80-0.87\left(2 d, 4 \mathrm{CH}_{3}\right)$; $1.50-2.14\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\left(5^{\prime}\right)\right), 2 \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 3.04-3.45\left(\mathrm{dm}, 8 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right), 2 \mathrm{H}-\mathrm{C}\left(6^{\prime}\right)\right) ; 5.60(\mathrm{~s}, \mathrm{H}-\mathrm{C}(5(6))) ; 6.21(d$, ${ }^{3} J(2(9), 3(8)=5.0, \mathrm{H}-\mathrm{C}(3(8))) ; 6.72(d, \mathrm{H}-\mathrm{C}(2(9))) . \mathrm{MS}(70 \mathrm{eV}): 351\left(M^{+}+\mathrm{H}, 8\right), 350\left(M^{+}, 4\right), 239$ $\left(M^{+}+\mathrm{H}-\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N}, 38\right), 238\left(\mathrm{M}^{+}+\mathrm{H}-\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N}, 20\right), 237\left(M^{+}+\mathrm{H}-\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N}, 62\right), 126\left(M^{+}-2 \mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N}, 88\right), 58$ (100). HR-MS $\left(\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{2}, M^{+}+\mathrm{H}\right)$: calc. 351.280010 ; found (I) 351.28062 (II) 351.2797.

4,7-Bis (diethylamino)tricyclo[5.2.1.0. ${ }^{4,10}$]deca-1(10),2,5,8-tetraene (12i). Compound $8 \mathbf{8}$ ($1135 \mathrm{mg}, 3.09$ $\mathrm{mmol})$ was reacted with $\mathrm{Et}_{2} \mathrm{NH}(8 \mathrm{ml})$ for 4 d according to the General Procedure. In addition, the product was purified by Kugelrohr distillation ($100^{\circ} / 0.1$ Torr): 645 mg ($2.39 \mathrm{mmol}, 77 \%$) of $\mathbf{1 2 i}$, colorless oil, which rapidly becomes brown under the influence of air, purity 100% (NMR). IR (film): 3060, 2980, 2940, 2880, 2830, 1460, $1450,1375,1205,1105,1070,790$. UV (hexane) 215 (sh, 4.012), 235 (3.644), 285 (3.584). ${ }^{1} \mathrm{H}-\mathrm{NMR}(270 \mathrm{MHz}$, $\left.\left.\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): 1.09\left(t,{ }^{3} J\left(1^{\prime}, 2^{\prime}\right)=7.2,4 \mathrm{CH}_{3}\right)\right) ; 2.66-2.93\left(m^{2}{ }^{2} J\left(1^{\prime}, 1^{\prime}\right)=-13.0,4 \mathrm{CH}_{3} \mathrm{CH}_{2}\right)\right) ; 5.47(\mathrm{~s}, \mathrm{H}-\mathrm{C}(5(6))) ; 6.14(d$, $\left.{ }^{3} J(2(9), 3(8))=5.0, \mathrm{H}-\mathrm{C}(3(8))\right) ; 6.61(d, \mathrm{H}-\mathrm{C}(2(9))) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.63 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 15.88\left(q t,{ }^{1} J(\mathrm{C}, \mathrm{H})=125.2\right.$, $\left.{ }^{2} J(\mathrm{C}, \mathrm{H})=2, \mathrm{C}\left(2^{\prime}\right)\right) ; 45,6\left(t q,{ }^{1} J(\mathrm{C}, \mathrm{H})=131.6,{ }^{2} J(\mathrm{C}, \mathrm{H})=4.3, \mathrm{C}\left(1^{\prime}\right)\right) ; 82.0\left(t,{ }^{2} J(\mathrm{C}, \mathrm{H}) \approx 6, \mathrm{C}(4(7))\right) ; 128.8(d d$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=164.2,{ }^{2} J(\mathrm{C}, \mathrm{H})=5, \mathrm{C}(5(6))\right) ; 136.2\left(d d,{ }^{1} J(\mathrm{C}, \mathrm{H})=166.2,{ }^{2} J(\mathrm{C}, \mathrm{H})=2.5, \quad \mathrm{C}(2(9))\right) ; 148.5(d d$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=165.5,{ }^{2} J(\mathrm{C}, \mathrm{H})=3, \mathrm{C}(3(8))\right) ; 162.2\left(t t,{ }^{2} J(\mathrm{C}, \mathrm{H})=11,{ }^{3} J(\mathrm{C}, \mathrm{H})=5, \mathrm{C}(1)\right) ; 165.2\left(t,{ }^{3} J(\mathrm{C}, \mathrm{H})=4, \mathrm{C}(10)\right)$. MS (70 eV): $272\left(M^{+}+2 \mathrm{H}, 10\right), 271\left(M^{+}+\mathrm{H}, 46\right), 270\left(M^{+}, 8\right), 242\left(M^{+}+\mathrm{H}-\mathrm{C}_{2} \mathrm{H}_{5}, 13\right), 241\left(M^{+}-\mathrm{C}_{2} \mathrm{H}_{5}, 32\right)$, $199 \quad\left(M^{+}+\mathrm{H}-\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{~N}, \quad 99\right), \quad 198 \quad\left(M^{+}-\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{~N}, \quad 48\right), 197 \quad\left(M^{+}-\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}, \quad 100\right), 184$ $\left(M^{+}+\mathrm{H}-\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{~N}-\mathrm{CH}_{3}, 68\right), 182\left(M^{+}-\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}-\mathrm{CH}_{3}, 26\right), 128\left(M^{+}+2 \mathrm{H}-2\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{~N}, 82\right), 127$ $\left(M^{+}+\mathrm{H}-2\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{~N}, 71\right), 126\left(M^{+}-2\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{~N}, 91\right), 115(51)$. HR-MS $\left(\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{2}, M^{+}+\mathrm{H}\right)$: calc. 271.21741; found 271.21715.

Reaction of $\mathbf{8 b}$ with Pyrrolidine. Compound $\mathbf{8 b}$ (200 mg 0.55 mmol) was reacted with dist. pyrrolidine (5 ml) for 1 d . Workup without column chromatography gave 110 mg of a viscous brown syrup, probably predominantly 1,4,7-tripyrrolidinocyclo[5.2.1.0, ${ }^{40}$]deca-2,5,8-triene (9 h). ${ }^{\mathbf{H}} \mathrm{H}-\mathrm{NMR}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 5.70 (br. s), and non-resolved signals between 1 and 3 ppm .

Reaction of 8 b with 2,6 -Dimethylpiperidine. Compound $\mathbf{8 b}$ (20 mg 0.05 mmol) was stirred for 5 d in 2,6 -dimethylpiperidine (3 ml) at 25°. The amine was distilled off in rotary evaporator and the residue dried in vacuo for 30 min at 0.1 Torr. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum indicated, that no reaction had taken place.

Reaction of $\mathbf{8 b}$ with $2,2,6,6$-Tetramethylpiperidine. Compound $\mathbf{8 b}(20 \mathrm{mg}, 0.05 \mathrm{mmol})$ was stirred for 14 d in $2,2,6,6$-tetramethylpiperidine (3 ml) at 25°. The amine was distilled off in a rotary evaporator, and the residue was dried in vacuo for 2 h at $40^{\circ} / 0.1$ Torr. The ${ }^{\mathrm{I}} \mathrm{H}$-NMR spectrum indicated, that no reaction had taken place.

Attempted Quaternization of 12. a) Compound $\mathbf{1 2 i}(150 \mathrm{mg} 0.55 \mathrm{mmol})$ was stirred with MeI ($1.0 \mathrm{ml}, 15.20$ $\mathrm{mmol})$ in anh. $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$ for 2 d , worked up by standard procedures, and dried in vacuo for 30 min at $25^{\circ} / 0.1$ Torr. Yield: 120 mg brown syrup, tending to polymerization. Most likely some different quaternization products had been formed. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.00(t) ; 2.50-2.85(\mathrm{~m}) ; 3.00-3.85(\mathrm{~m}) ; 5.94(\mathrm{~s}) ; 6.30\left(\mathrm{~d},{ }^{3} \mathrm{~J}=5\right) ; 7.25$ ($d,{ }^{3} J=5$).
b) Compound 12 e ($120 \mathrm{mg}, 0.41 \mathrm{mmol}$) was stirred with $\mathrm{Me}_{2} \mathrm{SO}_{4}(51 \mathrm{mg}, 0.41 \mathrm{mmol})$ in anh. $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ for 1 d at 25°. Standard workup yielded a brown syrup tending to polymerization. All purification attempts failed.

Reaction of 12 i with Na under NMR Control. a) Compound $\mathbf{1 2 i}\left(70 \mathrm{mg}, 0.26 \mathrm{mmol}\right.$) was reacted with Na at 25° according to [25]. After 6 h , the color became dark red-brown. The NMR signals of $\mathbf{1 2 i}$ decreased, signals of a reaction product showed up. After 31 h , only traces of $\mathbf{1 2 i}$ were left, after 55 h the reaction was complete. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(270 \mathrm{MHz},\left(\mathrm{D}_{8}\right) \mathrm{THF}\right): 1.03\left(t, \mathrm{CH}_{3},{ }^{3} J=7.2\right) ; 2.71\left(q, \mathrm{CH}_{2} \mathrm{~N}\right) ; 5.55(\mathrm{~s}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.63 \mathrm{MHz},\left(\mathrm{D}_{8}\right) \mathrm{THF}\right.$, SEFT $):$ $16.1\left(+, q,{ }^{1} J(\mathrm{C}, \mathrm{H})=125\right) ; 44.2\left(-, t q,{ }^{1} J(\mathrm{C}, \mathrm{H})=131,{ }^{2} J(\mathrm{C}, \mathrm{H})=5\right) ; 65.3\left(+, d,{ }^{1} J(\mathrm{C}, \mathrm{H})=130\right), 87.4(-, t$, $\left.{ }^{2} J(\mathrm{C}, \mathrm{H})=8\right), 132.9\left(+, d,{ }^{1} J(\mathrm{C}, \mathrm{H})=161\right)$.
b) Compound 12 i ($110 \mathrm{mg}, 0.41 \mathrm{mmol}$) was reacted with Na at -30° according to the [25]. After 6 h , the mixture became dark red-brown. The NMR signals of $\mathbf{1 2 i}$ decreased, the signals of the product obtained under a showed up. The reaction was complete after $66 \mathrm{~h} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz},\left(\mathrm{D}_{8}\right) \mathrm{THF}\right)$: as under $a .{ }^{13} \mathrm{C}$-NMR (50.31 $\left.\mathrm{MHz},\left(\mathrm{D}_{8}\right) \mathrm{THF}, \mathrm{SEFT}\right): 16.5(+) ; 44.6(-) ; 45.2(-) ; 65.5(+) ; 87.6(-) ; 133.1(+) ; 133.3(+) .{ }^{13} \mathrm{C}-\mathrm{NMR}(50.31$ $\mathrm{MHz},\left(\mathrm{D}_{8}\right)$ THF, DEPT): $16.5(+) ; 44.6(-) ; 45.2(-) ; 65.5(+) ; 133.1(+) ; 133.3(+)$. The signals at 133.1 and 133.3 ppm have the same intensity.

Reaction of 12 e with Na under NMR Control. Compound $\mathbf{1 2 e}(30 \mathrm{mg}, 0.10 \mathrm{mmol})$ was reacted with Na at 25° according to [25]. After 8 h , the mixture became dark red-brown. The NMR signals of $\mathbf{1 2 e}$ decreased, the signals of a reaction product showed up. The reaction was complete after 107 h . Quenching experiment with MeOH vide infra. ${ }^{\mathrm{t}} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz},\left(\mathrm{D}_{8}\right) \mathrm{THF}\right): 1.48\left(\mathrm{~m}, \mathrm{CH}_{2}\right) ; 2.34-2.63\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 3.30(\mathrm{~s}) ; 5.31(\mathrm{~s}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100.62)$ $\left.\mathrm{MHz},\left(\mathrm{D}_{8}\right) \mathrm{THF}, \mathrm{SEFT}\right): 26.0\left(-, t,{ }^{1} J(\mathrm{C}, \mathrm{H})=126\right) ; 27.7\left(-, t,{ }^{1} J(\mathrm{C}, \mathrm{H})=127\right) ; 50.5\left(-, t,{ }^{1} J(\mathrm{C}, \mathrm{H})=130\right) ; 89.0(-$, $\left.t,{ }^{2} J(\mathrm{C}, \mathrm{H})=8\right) ; 133.1\left(+, d,{ }^{1} J(\mathrm{C}, \mathrm{H})=162\right)$. Within several months, the intensity ratio of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signals at 5.31 and 3.30 ppm changed from 6:1 to 2.5:1.

Reaction of 12 f with Na under NMR Control. Compound $\mathbf{1 2 f}(50 \mathrm{mg}, 0.17 \mathrm{mmol})$ was reacted with Na under NMR control at 25° according to [25]. The mixture became dark red-brown after 6 h . The NMR signals of $\mathbf{1 2 f}$ decreased, and the signals of a reaction product showed up. The reaction was complete after 107 h . ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (270 $\left.\mathrm{MHz},\left(\mathrm{D}_{8}\right) \mathrm{THF}\right): 2.37-2.76\left(m, \mathrm{CH}_{2} \mathrm{~N}\right) ; 3.63\left(m, \mathrm{CH}_{2} \mathrm{O}\right) ; 5.45(\mathrm{~s}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(67.93 \mathrm{MHz},\left(\mathrm{D}_{8}\right) \mathrm{THF}\right.$, SEFT $): 49.2$ $\left(-, \mathrm{CH}_{2} \mathrm{~N}\right) ; 50.0\left(-, \mathrm{CH}_{2} \mathrm{~N}\right) ; 58.3(+) ; 68.1\left(--\mathrm{CH}_{2} \mathrm{O}\right) ; 88.6(-) ; 133.2(+)$.

Reaction of 12i with Na-K Alloy. a) Compound $\mathbf{1 2 i}(40 \mathrm{mg}, 0.15 \mathrm{mmol})$ in anh. THF (5 ml) was stirred under Ar with $\mathrm{Na}-\mathrm{K}$ alloy ($0.3 \mathrm{ml}, \mathrm{NaK}_{2.8}$) [27] for 24 h at 25°. The mixture became dark brown. The soln. was decanted under Ar into $\mathrm{MeOH}(10 \mathrm{ml})$ at -78°; the mixture was stirred for 12 h , allowing it to slowly warm up to 25°, and then was poured into $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml})$. The resulting mixture was extracted with $t-\mathrm{BuOMe}(3 \times 30 \mathrm{ml})$. The combined org. phases were dried MeSO_{4}, filtered, and the solvent was distilled off in a rotary evaporator. The residue was chromatographed through 20 g of silica gel $\left((t-\mathrm{Bu})_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N} 10: 1\right.$, column $\left.20 \times 1 \mathrm{~cm}\right): 25 \mathrm{mg}(0.07 \mathrm{mmol}, 53 \%)$ 1,4,7-tris (diethylamino) tricyclo[5.2.1.0 ${ }^{4.10}$]deca-2,5,8-triene (9 i), colorless oil, which turns brown under the influence of air, purity $\sim 95 \%$ (NMR). IR (film): 3050, 2970, 2930, 2870, 2800, 1470, 1450, 1370, 1340, 1210, 1100, $1030,800,750 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.01\left(t,{ }^{3} J\left(1^{\prime}, 2^{\prime}\right)=7.2,6 \mathrm{CH}_{3}\right) ; 2.65\left(q u i n t ., 6 \mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; 2.77(\mathrm{~s}$, $\mathrm{H}-\mathrm{C}(10)$) $) ; 5.55(s, \mathrm{H}-\mathrm{C}(2(3,5,6,8,9))) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(20.17 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 15.8\left(q, \mathrm{C}\left(2^{\prime}\right)\right) ; 43.8\left(t, \mathrm{C}\left(1^{\prime}\right)\right) ; 87.3(s$, $\mathrm{C}(1(4,7))) ; 132.8(d, \mathrm{C}(2(3,5,6,8,9))) . \mathrm{MS}(70 \mathrm{eV}): 344\left(M^{+}+1,2\right), 343\left(M^{+}, 7\right), 272\left(M^{+}+\mathrm{H}-\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{~N}, 42\right)$, $271\left(M^{+}-\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{~N}, 45\right), 242\left(M^{+}-\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{~N}-\mathrm{C}_{2} \mathrm{H}_{5}, 60\right), 227\left(M^{+}-\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{~N}-\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{CH}_{3}, 38\right), 199$ $\left(M^{+}+\mathrm{H}-\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{~N}-2 \mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{CH}_{3}, 50\right), 184\left(M^{+}-\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{~N}-3 \mathrm{C}_{2} \mathrm{H}_{5}, 36\right), 170\left(M^{+}-2\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{~N}-\mathrm{C}_{2} \mathrm{H}_{5}\right.$, $100), 128\left(M^{+}+\mathrm{H}-3\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{~N}, 41\right), 127\left(M^{+}-3\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{~N}, 18\right), 115(18)$.
b. Compound $12 \mathrm{i}(30 \mathrm{mg}, 0.11 \mathrm{mmol})$ was reacted as described under a. MeOH was replaced by $\mathrm{CH}_{3} \mathrm{OD} .19$ mg ($0.05 \mathrm{mmol}, 45 \%$) of 9 i , no D incorporation (MS).

Trapping of the Reaction Product of 12e and Na. Compound $12 \mathrm{e}(30 \mathrm{mg}, 0.10 \mathrm{mmol})$ was reacted with Na under NMR control at 25° according to [25]. After 60 d , the NMR tube was opened, and the content was poured into $\mathrm{MeOH}(10 \mathrm{ml})$ at -78° under Ar. After stirring for $2 \mathrm{hat}-78^{\circ}$, the mixture was allowed to warm up to 25°, and was then poured into $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml})$. The mixture was extracted three times with $(t-\mathrm{Bu})_{2} \mathrm{O}$. The combined org. phases were dried MgSO_{4}, filtered, and concentrated in a rotary evaporator to about 2 ml . Polymeric components were
removed by column chromatography through 10 g silica gel $\left(t-\mathrm{BuOMe} / \mathrm{Et}_{3} \mathrm{~N} 10: 1\right.$, column $\left.10 \times 1 \mathrm{~cm}\right)$ to give 44 mg of a dark brown, viscous syrup. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.4-1.8(\mathrm{~m}) ; 2.2-2.6(\mathrm{~m}) ; 3.36(\mathrm{~s}) ; 5.44(\mathrm{~s})$. MS $(70 \mathrm{eV}): 592(12), 508\left(592-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}, 21\right), 424\left(592-2 \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}, 8\right), 296\left(592-2 \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}-\mathrm{C}_{10} \mathrm{H}_{8}, 72\right), 212$ $\left(296-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}, 84\right), 211\left(296-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}, 100\right), 128\left(296-2 \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}, 79\right)$.

Reaction of 12 i with Diethylamide. $\mathrm{Et}_{2} \mathrm{NH}(575 \mathrm{mg}, 7.88 \mathrm{mmol})$ was stirred under Ar in anh. THF (8 ml) at 25° with $\mathrm{Na}-\mathrm{K}$ alloy (0.3 ml ; $\mathrm{NaK}_{2.8}$) [27] for 6 h . The soln. was decanted under Ar into $35 \mathrm{mg}(0.13 \mathrm{mmol})$ of $\mathbf{1 2 i}$, which previously had been dried for 2 h at $25^{\circ} / 0.1$ Torr. The mixture was stirred for 20 h at 25°, poured into $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$ and then extracted with t-BuOMe ($3 \times 50 \mathrm{ml}$). The combined org. phases were dried (MgSO_{4}), filtered, the solvent was removed in a rotary evaporator, and the residue was dried in vacuo for 30 min at $25^{\circ} / 0.1$ Torr. Yield $30 \mathrm{mg}(0.11$ mmol), 85%) of unreacted $\mathbf{1 2 i}$, identified by its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum.

Reaction of 8 b with Diethylamide. $\mathrm{Et}_{2} \mathrm{NH}(1.0 \mathrm{~g}, 13.7 \mathrm{mmol})$ was stirred in anh. THF (10 ml) with $\mathrm{Na}-\mathrm{K}$ alloy $\left(0.5 \mathrm{ml} ; \mathrm{NaK}_{2.8}\right)$ under Ar for 6 h at 25°. The soln. was cooled to -78°, and a soln. of 8 b ($50 \mathrm{mg}, 0.14 \mathrm{mmol}$) in anh. THF (3 ml) was added within 5 min . The mixture was warmed to 25° over a period of 1 h , then stirred for 2 d and decanted into $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml})$. The mixture was extracted with $t-\mathrm{BuOMe}(3 \times 30 \mathrm{mI})$. The combined org. phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and the solvent was removed in a rotary evaporator. The residue was dried for 30 min at $25^{\circ} / 0.1$ Torr. Yield $\left.30 \mathrm{mg}(0.11 \mathrm{mmol}), 82 \%\right)$ of $\mathbf{1 2 i}$, identified by its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum.

REFERENCES

[1] R.B. Woodward, T. Fukunaga, R. C. Kelly, J. Am. Chem. Soc. 1964, 86, 3162.
[2] P. E. Eaton, Tetrahedron 1979, 35, 2189, and references cited therein.
[3] L.A. Paquette, D. W. Balogh, R. Usha, D. Kounz, G. G. Christoph, Science 1981, 211, 575; L. A. Paquette, D.W. Balogh, J. Am. Chem. Soc. 1982, 104, 774; R.J. Ternansky, D. W. Balogh, L. A. Paquette, J. Am. Chem. Soc. 1982, 104, 4503.
[4] H. Butenschön, Dissertation, Univ. Hamburg, 1983.
[5] H. Butenschön, A. de Meijere, Tetrahedron Lett. 1983, 24, 4563.
[6] D. Bosse, A. de Meijere, Chem. Ber. 1978, 111, 2243.
[7] Isotriquinacene $=$ Tricyclo[5.2.1.04,10]deca-1,5,8-trien, see J. D. Kramer, L. A. Paquette, J. Org. Chem. 1984, 49, 1445.
[8] H. Butenschön, A. de Meijere, Chem. Ber. 1985, 118, 2757.
[9] Prelim. commun. H. Butenschön, A. de Meijere, Tetrahedron Lett. 1984, 25, 1693.
[10] R. Aydin, J.-P. Loux, H. Günther, Angew. Chem. 1982, 94, 451; ibid. Int. Ed. 1982, 21, 449.
[11] T. Jacobson, Chem. Scr. 1974, 174.
[12] W.F. Maier, P.v.R. Schleyer, J. Am. Chem. Soc. 1981, 103, 1891.
[13] M.J. S. Dewar, W. Thiel, J. Am. Chem. Soc. 1977, 99, 4899, 4907.
[14] H. Hopf, Angew. Chem. 1984, 96, 947; ibid. Int. Ed. 1984, 23, 948.
[15] I. Fleming, 'Grenzorbitale und Reaktionen organischer Verbindungen', Verlag Chemie, Weinheim-New York, 1979, p. 138.
[16] A. Streitwieser, Jr., 'Molecular Orbital Theory for Organic Chemists’, John Wiley \& Sons, New York-London, 1961, p. 290f.; R. Zahradnik, J. Michl. J. Koutecky, Collect. Czech. Chem. Commun. 1964, 29, 1932; R. Zahradnik, J. Michl, Collect. Czech. Chem. Commun. 1965, 30, 3529; F. Tomas, J. I. Fernandez-Alonso, An. Quim. (Madrid) 1976, 72, 122.
[17] A. Minksy, A. Y. Meyer, K. Hafner, M. Rabinovitz, J. Am. Chem. Soc. 1983, 105, 3957 (we thank Prof. M. Rabinovitz for a preprint of this paper).
[18] J. Klein, A. Medlik, J. Chem. Soc., Chem. Commun. 1973, 275.
[19] T. Clark, P.v.R. Schleyer, J. Chem. Soc., Chem. Commun. 1976, 798.
[20] J. J. Bahl, R. B. Bates, W. A. Beavers, N. S. Mills, J. Org. Chem. 1976, 41, I620.
[21] D. Wihelm, T. Clark, P.v.R. Schleyer, K. Buch], G. Boche, Chem. Ber. 1983, 116, 1669.
[22] P. Gund, J. Chem. Educ. 1972, 49, 100.
[23] J. Klein, Tetrahedron 1983, 39, 2759.
[24] T. Clark, D. Wilhelm, P.v.R. Schleyer, Tetrahedron Lett. 1982, 23, 3547.
[25] A. Minsky, A. Y. Meyer, M. Rabinovitz, J. Am. Chem. Soc. 1982, 104, 2475 and ref. [17].
[26] T. Schaefer, W.F. Schneider, Can. J. Chem. 1963, 41, 966; R. N. Young, Progr. in NMR Spectrosc. 1979, 12, 261.
[27] J. E. Ellis, E. A. Flom, J. Organomet. Chem. 1975, 99, 263.
[28] J. K. Kochi, Ed., 'Free Radicals', John Wiley \& Sons, New York-London-Sidney-Toronto, Vol. 1, 1973, p. 570 ff .

[^0]: ${ }^{1}$) Compounds 6 and 7 react with OH^{-}, leading to hydroxytriquinacenes. Compounds 8 do not react with OH^{-} (cf. [6]).

[^1]: ${ }^{2}$) Compound 5 may be regarded as a 'dendralene' (cf. [14]).

[^2]: ${ }^{3}$) The change of the chemical shift relative to benzene is 10.7 ppm per unit charge at the C -atoms bearing H -atoms. The charge excess of $\mathrm{C}(2,3,5,6,8,9)$ in 3^{2-} is calculated to be -0.144 (see Table 7). 7.27-0.144 $\times 10.7$ $\mathrm{ppm}=5.73 \mathrm{ppm}$.

